Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
BMC Public Health ; 23(1): 988, 2023 05 27.
Article in English | MEDLINE | ID: covidwho-20242605

ABSTRACT

BACKGROUND: Policy responses to COVID-19 in Victoria, Australia over 2020-2021 have been supported by evidence generated through mathematical modelling. This study describes the design, key findings, and process for policy translation of a series of modelling studies conducted for the Victorian Department of Health COVID-19 response team during this period. METHODS: An agent-based model, Covasim, was used to simulate the impact of policy interventions on COVID-19 outbreaks and epidemic waves. The model was continually adapted to enable scenario analysis of settings or policies being considered at the time (e.g. elimination of community transmission versus disease control). Model scenarios were co-designed with government, to fill evidence gaps prior to key decisions. RESULTS: Understanding outbreak risk following incursions was critical to eliminating community COVID-19 transmission. Analyses showed risk depended on whether the first detected case was the index case, a primary contact of the index case, or a 'mystery case'. There were benefits of early lockdown on first case detection and gradual easing of restrictions to minimise resurgence risk from undetected cases. As vaccination coverage increased and the focus shifted to controlling rather than eliminating community transmission, understanding health system demand was critical. Analyses showed that vaccines alone could not protect health systems and need to be complemented with other public health measures. CONCLUSIONS: Model evidence offered the greatest value when decisions needed to be made pre-emptively, or for questions that could not be answered with empiric data and data analysis alone. Co-designing scenarios with policy-makers ensured relevance and increased policy translation.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Victoria/epidemiology , SARS-CoV-2 , Communicable Disease Control , Policy
2.
Cell reports ; 2023.
Article in English | EuropePMC | ID: covidwho-2255391

ABSTRACT

Much of the world's population had already been infected with COVID-19 by the time that the Omicron variant emerged at the end of 2021, but the scale of the Omicron wave was larger than any that had come before or since, and it left a global imprinting of immunity which changed the COVID-19 landscape. In this study, we simulate a South African population, and demonstrate how population-level vaccine effectiveness and efficiency changed over the course of the first two years of the pandemic. We then introduce three hypothetical variants and evaluate the impact of vaccines with different properties. We find that variant-chasing vaccines have a narrow window of dominating pre-existing vaccines, but that a variant-chasing vaccine strategy may have global utility, depending on the rate of spread from setting to setting. Next-generation vaccines might be able to overcome uncertainty in pace and degree of viral evolution. Graphical Cohen et al. conduct a model-based analysis of the health impact of COVID-19 vaccination in the context of viral evolution. Cohen et al. find variant-chasing vaccines have a narrow window of dominating pre-existing vaccines and next-generation vaccines might be able to overcome uncertainty in pace and degree of viral evolution.

3.
Cell Rep ; 42(4): 112308, 2023 Mar 15.
Article in English | MEDLINE | ID: covidwho-2255392

ABSTRACT

Much of the world's population had already been infected with COVID-19 by the time the Omicron variant emerged at the end of 2021, but the scale of the Omicron wave was larger than any that had come before or has happened since, and it left a global imprinting of immunity that changed the COVID-19 landscape. In this study, we simulate a South African population and demonstrate how population-level vaccine effectiveness and efficiency changed over the course of the first 2 years of the pandemic. We then introduce three hypothetical variants and evaluate the impact of vaccines with different properties. We find that variant-chasing vaccines have a narrow window of dominating pre-existing vaccines but that a variant-chasing vaccine strategy may have global utility, depending on the rate of spread from setting to setting. Next-generation vaccines might be able to overcome uncertainty in pace and degree of viral evolution.

4.
Philos Trans A Math Phys Eng Sci ; 380(2233): 20210311, 2022 Oct 03.
Article in English | MEDLINE | ID: covidwho-1992466

ABSTRACT

Long-term control of SARS-CoV-2 outbreaks depends on the widespread coverage of effective vaccines. In Australia, two-dose vaccination coverage of above 90% of the adult population was achieved. However, between August 2020 and August 2021, hesitancy fluctuated dramatically. This raised the question of whether settings with low naturally derived immunity, such as Queensland where less than [Formula: see text] of the population is known to have been infected in 2020, could have achieved herd immunity against 2021's variants of concern. To address this question, we used the agent-based model Covasim. We simulated outbreak scenarios (with the Alpha, Delta and Omicron variants) and assumed ongoing interventions (testing, tracing, isolation and quarantine). We modelled vaccination using two approaches with different levels of realism. Hesitancy was modelled using Australian survey data. We found that with a vaccine effectiveness against infection of 80%, it was possible to control outbreaks of Alpha, but not Delta or Omicron. With 90% effectiveness, Delta outbreaks may have been preventable, but not Omicron outbreaks. We also estimated that a decrease in hesitancy from 20% to 14% reduced the number of infections, hospitalizations and deaths by over 30%. Overall, we demonstrate that while herd immunity may not be attainable, modest reductions in hesitancy and increases in vaccine uptake may greatly improve health outcomes. This article is part of the theme issue 'Technical challenges of modelling real-life epidemics and examples of overcoming these'.


Subject(s)
COVID-19 , Immunity, Herd , Australia/epidemiology , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Queensland/epidemiology , SARS-CoV-2 , Vaccination
5.
Sci Rep ; 12(1): 6309, 2022 04 15.
Article in English | MEDLINE | ID: covidwho-1795676

ABSTRACT

We used an agent-based model Covasim to assess the risk of sustained community transmission of SARSCoV-2/COVID-19 in Queensland (Australia) in the presence of high-transmission variants of the virus. The model was calibrated using the demographics, policies, and interventions implemented in the state. Then, using the calibrated model, we simulated possible epidemic trajectories that could eventuate due to leakage of infected cases with high-transmission variants, during a period without recorded cases of locally acquired infections, known in Australian settings as "zero community transmission". We also examined how the threat of new variants reduces given a range of vaccination levels. Specifically, the model calibration covered the first-wave period from early March 2020 to May 2020. Predicted epidemic trajectories were simulated from early February 2021 to late March 2021. Our simulations showed that one infected agent with the ancestral (A.2.2) variant has a 14% chance of crossing a threshold of sustained community transmission (SCT) (i.e., > 5 infections per day, more than 3 days in a row), assuming no change in the prevailing preventative and counteracting policies. However, one agent carrying the alpha (B.1.1.7) variant has a 43% chance of crossing the same threshold; a threefold increase with respect to the ancestral strain; while, one agent carrying the delta (B.1.617.2) variant has a 60% chance of the same threshold, a fourfold increase with respect to the ancestral strain. The delta variant is 50% more likely to trigger SCT than the alpha variant. Doubling the average number of daily tests from ∼ 6,000 to 12,000 results in a decrease of this SCT probability from 43 to 33% for the alpha variant. However, if the delta variant is circulating we would need an average of 100,000 daily tests to achieve a similar decrease in SCT risk. Further, achieving a full-vaccination coverage of 70% of the adult population, with a vaccine with 70% effectiveness against infection, would decrease the probability of SCT from a single seed of alpha from 43 to 20%, on par with the ancestral strain in a naive population. In contrast, for the same vaccine coverage and same effectiveness, the probability of SCT from a single seed of delta would decrease from 62 to 48%, a risk slightly above the alpha variant in a naive population. Our results demonstrate that the introduction of even a small number of people infected with high-transmission variants dramatically increases the probability of sustained community transmission in Queensland. Until very high vaccine coverage is achieved, a swift implementation of policies and interventions, together with high quarantine adherence rates, will be required to minimise the probability of sustained community transmission.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Australia/epidemiology , COVID-19/epidemiology , Humans , Queensland/epidemiology , SARS-CoV-2/genetics
6.
BMC Infect Dis ; 22(1): 232, 2022 Mar 07.
Article in English | MEDLINE | ID: covidwho-1731519

ABSTRACT

BACKGROUND: In settings with zero community transmission, any new SARS-CoV-2 outbreaks are likely to be the result of random incursions. The level of restrictions in place at the time of the incursion is likely to considerably affect possible outbreak trajectories, but the probability that a large outbreak eventuates is not known. METHODS: We used an agent-based model to investigate the relationship between ongoing restrictions and behavioural factors, and the probability of an incursion causing an outbreak and the resulting growth rate. We applied our model to the state of Victoria, Australia, which has reached zero community transmission as of November 2020. RESULTS: We found that a future incursion has a 45% probability of causing an outbreak (defined as a 7-day average of > 5 new cases per day within 60 days) if no restrictions were in place, decreasing to 23% with a mandatory masks policy, density restrictions on venues such as restaurants, and if employees worked from home where possible. A drop in community symptomatic testing rates was associated with up to a 10-percentage point increase in outbreak probability, highlighting the importance of maintaining high testing rates as part of a suppression strategy. CONCLUSIONS: Because the chance of an incursion occurring is closely related to border controls, outbreak risk management strategies require an integrated approaching spanning border controls, ongoing restrictions, and plans for response. Each individual restriction or control strategy reduces the risk of an outbreak. They can be traded off against each other, but if too many are removed there is a danger of accumulating an unsafe level of risk. The outbreak probabilities estimated in this study are of particular relevance in assessing the downstream risks associated with increased international travel.


Subject(s)
COVID-19 , COVID-19/epidemiology , COVID-19/prevention & control , Disease Outbreaks/prevention & control , Humans , Longitudinal Studies , SARS-CoV-2 , Victoria/epidemiology
7.
PLoS Comput Biol ; 17(7): e1009149, 2021 07.
Article in English | MEDLINE | ID: covidwho-1325366

ABSTRACT

The COVID-19 pandemic has created an urgent need for models that can project epidemic trends, explore intervention scenarios, and estimate resource needs. Here we describe the methodology of Covasim (COVID-19 Agent-based Simulator), an open-source model developed to help address these questions. Covasim includes country-specific demographic information on age structure and population size; realistic transmission networks in different social layers, including households, schools, workplaces, long-term care facilities, and communities; age-specific disease outcomes; and intrahost viral dynamics, including viral-load-based transmissibility. Covasim also supports an extensive set of interventions, including non-pharmaceutical interventions, such as physical distancing and protective equipment; pharmaceutical interventions, including vaccination; and testing interventions, such as symptomatic and asymptomatic testing, isolation, contact tracing, and quarantine. These interventions can incorporate the effects of delays, loss-to-follow-up, micro-targeting, and other factors. Implemented in pure Python, Covasim has been designed with equal emphasis on performance, ease of use, and flexibility: realistic and highly customized scenarios can be run on a standard laptop in under a minute. In collaboration with local health agencies and policymakers, Covasim has already been applied to examine epidemic dynamics and inform policy decisions in more than a dozen countries in Africa, Asia-Pacific, Europe, and North America.


Subject(s)
COVID-19 , Models, Biological , SARS-CoV-2 , Systems Analysis , Basic Reproduction Number , COVID-19/etiology , COVID-19/prevention & control , COVID-19/transmission , COVID-19 Testing , COVID-19 Vaccines , Computational Biology , Computer Simulation , Contact Tracing , Disease Progression , Hand Disinfection , Host Microbial Interactions , Humans , Masks , Mathematical Concepts , Pandemics , Physical Distancing , Quarantine , Software
8.
Lancet Glob Health ; 9(7): e916-e924, 2021 07.
Article in English | MEDLINE | ID: covidwho-1294376

ABSTRACT

BACKGROUND: Vietnam has emerged as one of the world's leading success stories in responding to COVID-19. After a prolonged period of little to no transmission, there was an outbreak of unknown source in July, 2020, in the Da Nang region, but the outbreak was quickly suppressed. We aimed to use epidemiological, behavioural, demographic, and policy data from the COVID-19 outbreak in Da Nang to calibrate an agent-based model of COVID-19 transmission for Vietnam, and to estimate the risk of future outbreaks associated with reopening of international borders in the country. METHODS: For this modelling study, we used comprehensive data from June 15 to Oct 15, 2020, on testing, COVID-19 cases, and quarantine breaches within an agent-based model of SARS-CoV-2 transmission to model a COVID-19 outbreak in Da Nang in July, 2020. We applied this model to quantify the risk of future outbreaks in Vietnam in the 3 months after the reopening of international borders, under different behavioural scenarios, policy responses (ie, closure of workplaces and schools), and ongoing testing. FINDINGS: We estimated that the outbreak in Da Nang between July and August, 2020, resulted in substantial community transmission, and that higher levels of symptomatic testing could have mitigated this transmission. We estimated that the outbreak peaked on Aug 2, 2020, with an estimated 1060 active infections (95% projection interval 890-1280). If the population of Vietnam remains highly compliant with mask-wearing policies, our projections indicate that the epidemic would remain under control even if a small but steady flow of imported infections escaped quarantine into the community. However, if complacency increases and testing rates are relatively low (10% of symptomatic individuals are tested), the epidemic could rebound again, resulting in an estimated 2100 infections (95% projected interval 1050-3610) in 3 months. These outcomes could be mitigated if the behaviour of the general population responds dynamically to increases in locally acquired cases that exceed specific thresholds, but only if testing of symptomatic individuals is also increased. INTERPRETATION: The successful response to COVID-19 in Vietnam could be improved even further with higher levels of symptomatic testing. If the previous approaches are used in response to new COVID-19 outbreaks, epidemic control is possible even in the presence of low levels of imported cases. FUNDING: Ministry of Science and Technology (Vietnam). TRANSLATION: For the Vietnamese translation of the abstract see Supplementary Materials section.


Subject(s)
COVID-19/epidemiology , Communicable Diseases, Imported/epidemiology , Epidemics , Travel/legislation & jurisprudence , Humans , Internationality , Models, Theoretical , Risk Assessment , Vietnam/epidemiology
9.
Nat Commun ; 12(1): 2993, 2021 05 20.
Article in English | MEDLINE | ID: covidwho-1237998

ABSTRACT

Initial COVID-19 containment in the United States focused on limiting mobility, including school and workplace closures. However, these interventions have had enormous societal and economic costs. Here, we demonstrate the feasibility of an alternative control strategy, test-trace-quarantine: routine testing of primarily symptomatic individuals, tracing and testing their known contacts, and placing their contacts in quarantine. We perform this analysis using Covasim, an open-source agent-based model, which has been calibrated to detailed demographic, mobility, and epidemiological data for the Seattle region from January through June 2020. With current levels of mask use and schools remaining closed, we find that high but achievable levels of testing and tracing are sufficient to maintain epidemic control even under a return to full workplace and community mobility and with low vaccine coverage. The easing of mobility restrictions in June 2020 and subsequent scale-up of testing and tracing programs through September provided real-world validation of our predictions. Although we show that test-trace-quarantine can control the epidemic in both theory and practice, its success is contingent on high testing and tracing rates, high quarantine compliance, relatively short testing and tracing delays, and moderate to high mask use. Thus, in order for test-trace-quarantine to control transmission with a return to high mobility, strong performance in all aspects of the program is required.


Subject(s)
COVID-19/prevention & control , COVID-19/transmission , Contact Tracing/methods , Quarantine/methods , Humans , SARS-CoV-2/isolation & purification , United States
10.
BMJ Open ; 11(4): e045941, 2021 04 20.
Article in English | MEDLINE | ID: covidwho-1195844

ABSTRACT

OBJECTIVES: The early stages of the COVID-19 pandemic illustrated that SARS-CoV-2, the virus that causes the disease, has the potential to spread exponentially. Therefore, as long as a substantial proportion of the population remains susceptible to infection, the potential for new epidemic waves persists even in settings with low numbers of active COVID-19 infections, unless sufficient countermeasures are in place. We aim to quantify vulnerability to resurgences in COVID-19 transmission under variations in the levels of testing, tracing and mask usage. SETTING: The Australian state of New South Wales (NSW), a setting with prolonged low transmission, high mobility, non-universal mask usage and a well-functioning test-and-trace system. PARTICIPANTS: None (simulation study). RESULTS: We find that the relative impact of masks is greatest when testing and tracing rates are lower and vice versa. Scenarios with very high testing rates (90% of people with symptoms, plus 90% of people with a known history of contact with a confirmed case) were estimated to lead to a robustly controlled epidemic. However, across comparable levels of mask uptake and contact tracing, the number of infections over this period was projected to be 2-3 times higher if the testing rate was 80% instead of 90%, 8-12 times higher if the testing rate was 65% or 30-50 times higher with a 50% testing rate. In reality, NSW diagnosed 254 locally acquired cases over this period, an outcome that had a moderate probability in the model (10%-18%) assuming low mask uptake (0%-25%), even in the presence of extremely high testing (90%) and near-perfect community contact tracing (75%-100%), and a considerably higher probability if testing or tracing were at lower levels. CONCLUSIONS: Our work suggests that testing, tracing and masks can all be effective means of controlling transmission. A multifaceted strategy that combines all three, alongside continued hygiene and distancing protocols, is likely to be the most robust means of controlling transmission of SARS-CoV-2.


Subject(s)
COVID-19 , Pandemics , Australia/epidemiology , Contact Tracing , Humans , Masks , New South Wales/epidemiology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL